
Journal of Engineering Mathematics, Vol. 3, No. 3, July 1969. 
Wolters-Noordhoff Publishing - Groningen 
Printed in the Netherlands. 

173 

A Non-Linear Analysis of Steady Surface Waves on a Thin Sheet 
of Viscous Liquid Flowing Down an Incline 

S. H. S M I T H  

Department of Mathematics, University of Toronto, Toronto, Canada 

(Received September 24, 1968) 

S U M M A R Y  
A thin sheet of viscous liquid flows slowly down an uneven incline. The main conclusion derived in this paper is 
that the only effect of a variation in the bed from that of a uniform slope is noticed in the upstream direction; the 
flow has constant depth downstream from this variation. 

1. Introduction 

The flow in an open channel contains much of the theory of mathematical hydraulics. When the 
channel, such as a river, is inclined with an irregular bed, any steady flow results through a 
balance of the gravitational forces with those due to the pressure gradient and the viscous 
stress forces within the liquid. The presence of viscosity in the basic mathematical equations 
causes considerable difficulty, and one of the main techniques in previous theories is to replace 
all the viscous forces by a frictional resistance term derived from the empirical formula due to 
Manning. Stoker [1] devotes a section of his text "Water Waves" to such a theory; there it is 
applied to the large scale problem which considers the flow at the junction of two rivers. 

A theory for the non-linear gravity waves in a sheet of viscous liquid, where the viscous terms 
have been fully incorporated through the Navier-Stokes equation, has recently been presented 
by Mei [2]. In this paper Mei considers the unsteady flow down an inclined plane, and observes 
different types of wave motion. He restricts his study to situations with low Reynolds and 
Froude numbers so that, with basically a Stokes flow, the inertia terms are neglected. A formal 
expansion procedure (due to Lin and Clark in their development of inviscid long wave theory) 
then enabled the basic non-linear partial differential equation for the wave amplitude to be 
formulated. 

The only attempt known to the author at considering the steady motion down an incline of 
variable profile is that of P. Smith [33. It is a linear analysis that belongs to the "infinitesimal 
wave" class. The exact solution of the Navier-Stokes equations, which represents the steady 
flow of constant depth down an inclined plane (see Berker [43), was taken to be the basic flow; 
the perturbation scheme was developed with this as the zero order solution. A Fourier analysis 
allowed different bed profiles to be considered. 

In this paper we essentially generalize the analysis of Mei to include variations in the profile 
of the stream bed. Although the equation is given for the unsteady case, our main interest is in 
the steady state problem. Here, the resultant non-linear, ordinary differential equation is of the 
first order only. Numerical integration for different profiles of the bed follow with little diffi- 
culty, though direct analytical results are possible for just one particular case. Since completing 
the analysis described in this paper I have become aware of the later work of P. Smith [5], a 
report of which appears elsewhere in this Journal. He provides an intuitive deduction of the 
same basic differential equation, and then solves this numerically for a sinusoidal bed profile. 

2. Formulation 

We consider the two-dimensional laminar flow down an incline whose mean slope has the 
gradient tan 0. The fluid is incompressible with a constant coefficient of viscosity. The x'-axis is 
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set down the line of mean slope, and the y'-axis is normal to it so that the profile of the bot tom 
can be expressed by y' = h' (x'). When the flow is steady, the resultant profile of the free surface is 
written y' = q'(x'). We further define u' and v' t o b e  the velocities parallel to the x' and y' axes 
respectively at the point P(x', y'); th e pressure is p'. 

Figure 1 

All these physical quantities are now made non-dimensional by the following transfor- 
mations: (x', y', ~', h') = L(x,  y, q, h), (u', v') = U (u, v)and p' = (pvU/L)p; where p is the density, 
v the kinematic viscosity and L, U are length and velocity scales. 

The equations of motion are taken to be the Navier-Stokes equat ions  

Ux+ vy = 0,  

1 1 1 

(1) 

(2) 

1 l fi 1 
- - F 2  + (3 )  

where e = sin 0, fl = cos 0 and 

UL U 2 
R -  , F 2 = - - .  (4) 

v gL 

Clearly R is the Reynolds number and, with g the acceleration due to gravity, F 2 is the Froude 
number for the described motion. On the free surface profile y = q (x) we have 

Urlx = v ,  

( p -  2ux)qx + (u,, + vx) = 0 ,  (5a, b,c) 

The condition (5a) is the kinematic condition, and the other two satisfy the requirement for the 
stress to be zero on y = t /when the surface is assumed to be free of external stress and the 
effect of surface tension. Also, 

uh~=v  and u + v h ~ = O  on y = h ( x )  (6a,b) 

indicate the no-slip conditions. 
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When h(x) =- 0 there is the exact solution 

Re Rfl 
�9 u =  F ~ ( d y - � 8 9  v = 0  and p =  F ~ - ( d - y ) ,  (7) 

where d is a constant ; see Berker [4]. The length d' = Ld, in fact, is the constant depth of the 
liquid, and is taken to be the representative length scale in the direction normal to the bed in 
all that follows. 

3. The Basic Differential Equation 

So far the formulation has been completely general; we now make the basic physical assump- 
tions, following Mei. When the forces due to the viscous stresses and the pressure gradient are 
of equal importance, the Reynolds number is small ; if, further, the effects of gravity are of the 
same order as these terms, then the Froude number is also small. Therefore, our basic restric- 
tion within the following analysis is to write 

R = F 2 = e, (8) 

and then set e~  1. Consequently, the length scale L =  (Uv/g) ~, and, when we further take U = 
(9d') ~, the ratio d=d' /L  is equal to e. This constitutes a "shallow liquid" approximation, 
where both h and t/are 0 (e). Also, in order that the following analysis can in any way be trac- 
table, we assume that all the derivatives ofh and r/are 0 (e). 

The procedure now is to introduce the stream function 0(x, y) by 

u = 0 ,  and v = - O ~  (9) 

to satisfy (1), then write 

O =  ~, y"O,(x),  p =  ~ y"p,(x).  (10) 
n=0 n=0 

It is noted that 

0 = e(leY 2 - ly3) (11) 

is the stream function corresponding to the velocities given in (7) when R = F 2 = e. 
Before the series (10) are substituted into the equations of motion (2) and (3), some under- 

standing is required of the orders of magnitude of 0,  and p, for different n. It is first observed 
that the derivatives of 0,  and p, are of the same order in e as (or at least no smaller than) the 
order of 0 ,  and p~ respectively. Now, it is seen from (11) that 0 is O(e 3) when h(x) = 0 and 
t/(x) - e, but with only slow variations in the x-direction this must also be valid for all flows 
with variable t /and h in a thin sheet of liquid. Hence, 00 -- 0(e3), 01 = 0(e2), 02 -- O(e) and 
03 = 0(1). A similar consideration of the pressure as given in (7) shows that Po = O(e) and 
Pl = O(1). The orders of magnitude of the remaining quantities are found from the equations 
of motion. 

The expansions (10) are substituted into the momentum equations; when we equate the 
coefficients dry there follows 

- pox + e + Olxx+603  =  (010 x-20ox02), 

- P,x+ 02xx + 2404 = e(20102x- 00x03) , 

etc., from (2); also 

pl + 0oxx  =  (0oxx01- 0o01xx), 
2pz +603~ + Olxx x = e(0~01~x+20oxx02-02~-20ox02~),  

(12a) 

(12b) 

(12c) 

(12d) 

etc., from (3). In each of the above the right hand sides represent the complete inertia terms; 
they are much smaller than the other terms, and consequently are neglected. As the motion is a 
Stokes flow with R ~ 1, this was to be expected. The general pattern of the analysis can now be 
observed, for the infinite set of equations (12) enable us to solve for 0,  (n > 3) and p, (n > 1) in 
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terms of the four functions 00, 01, 0z and Po. In particular, we have 03 = - ~ e +  0(5) from 
(12a), and Pl = - f l  + O (e) from (12c). Both 03x and Plx are therefore O (e); (12b,d)then show 
that 0r and Pz must be O(e). The process has now been set up, as we consider each of the equa- 
tions (12) in turn it becomes clear that 0 ,  (n >4) and p, (n >2) are all O(e). When we substitute 
for 0,  (n > 3) and p, (n > 1) into the boundary conditions (5), (6) there result five equations from 
which 0o, 01, 02 and P0 can be eliminated to give the final differential equation for r/that we 
require. 

This elimination is straightforward, and we do not dwell on it here ; the details are left for an 
appendix. It is sufficient to note that 

603 = -c~+fitlx+O(52), 20z = e~/-/~tP/~+O(e3), 

Pl = - / 3 -  2et/x + O (ez), P0 =/~t/+ O (52), 

0 1 = - 2 h q a - 3 h e 0 3 + O ( 5 r  O o x = - h O l x - h 2 0 2 x - h 3 0 3 x + O ( e 5  ) 

are substituted into the kinematic surface condition to give directly 

c~ {(q - h)3}x-/~ {q~ ( n -  h)3}x = O (55). (13) 

After integration we have 

ct ( t / -  h) 3 - flt/x ( t / -  h) a = ct53 + O (e 5) ; (14) 

the constant of integration follows from the case h = 0, where r /= e and qx = 0. Therefore the 
resultant non-linear differential equation for the free surface profile is of the first order only. 

Several comments can be made at this juncture before solutions of the differential equation 
are considered. In (14) the first term is O(e3), while the second is O (er if this smaller term is 
neglected, then there follows the trivial approximation ~/-h-~ e. However, these terms can 
reasonably be considered in some degree of balance when the mean gradient of the incline 
tan 0 is taken to be small in some quite general manner. 

Secondly, a physical interpretation is now given of the purely formal expansion procedure 
that has led to the equation (14). For the pressure only Po and Pl were required; together these 
show p' ~- pgfl(rf-  y'). This indicates that the balance of momentum in the y' direction is 
satisfied by the hydrostatic pressure. As a result, p' -- 0 on the free surface. Also, the above 
analysis shows 202 + 6r/03 -~ 0; this corresponds to~u'/@' ~ 0 on y' = q'(x'). These dominate 
the two dynamic conditions (5b,c) to be satisfied on the liquid surface. The above statements 
form the basic assumptions of P. Smith [5], consequently the resultant differential equation 
(14) (in this paper) and (4.2)in 1-5] are equivalent. 

Further, the velocity u is given by 

u (x, y) = �89 - h)(2t/- y - h)(c~ - fit/x ) + O (er 

The conservation of mass is observed, to the third order in e, 'with the result 

f~ udy = �89 . 

So far the study has been restricted to steady flows; this has been for analytical simplicity. 
When the motion is unsteady the equation corresponding to (13) is found by amalgamating the 
calculations of Mei with those followed above. Here the result is just stated. If the physical time 
variable t' is written as Tt, where t is non-dimensional, and the Strouhal number L / U T  is 
written as -c, we define z = e 2. The partial differential equation is then 

e 2 t h + c~ (t/-- h) 2 ( t / -  h)x = �89 {r/~ (r /-  h) a }x + O (e 5) ; 

this is equivalent to that discovered by Mei when h(x) =- O. As a further generalization, the 
equation for three-dimensional, time dependent, flow is given. We take Oz to be the axis per- 
pendicular to the x, y-plane, and so lying on the face of the incline. The same formal analysis 
shows the differential equation for q (x, z, t) to be 
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ezq, + ~ (~/- h) z (r/-  h)x = �89 {~/~ (q - h) 3 }x + �89 {~/z (q - h) 3 }z + 0 (e'). 

This reduces to the three dimensional equation given by P. Smith [-5] when the flow is time 
dependent. 

In the final comment we reformulate the equation when h = 0 (e2). The resultant free surface 
elevation is written ~/= e + a with a = O (e 2) ; then a(x) is given by 

fle2 ax - 3c~e(a- h) - 3c~(a- h) 2 = O(eS). 

In evaluating the error on the right-hand side it is necessary to repeat the analysis that resulted 
in (14), beginning from the initial equations and conditions (1)-(6). With ct/fl small, the last term 
on the left hand side can also be neglected to give a linear differential equation with the solution 

a(x) - z -  l e ~/~ j~~ (15) 

when z = fle/3~ and Xo is a constant. Such a solution comes more under the heading of a 
"infinitesimal wave". However, (15) is less general than the linear analysis of P. Smith [-3], who 
was not restricted to the "shallow liquid" approximation that we required for the basic dif- 
ferential equation to be derived. In fact the solution (15) provides the common ground between 
the two theories. 

4. Analytical Solutions 

It appears that solutions of the differential equation (14) by direct analysis are possible only 
when dh/dx is constant. The main features are revealed when we take dh/dx to be zero, which 
implies that h (x) - 0, with no loss of generality. Now if the solution is to be valid for all values 
of x, it is immediately seen that we must have the constant depth q(x) = e. However, if the domain 
of x is restricted in some way, then the general solution of (14) can be written in the form 

-~ (x + k) = r/+ +e log (r /-  e) 2 1 2q + e 
fl 172 + ~/e + e a ~ e  arc tan C/~ ~- (16) 

for some constant k. As ~/tends to e this shows r / -  e ~ _+ exp {(3e/fie)(x + k)}. Therefore ~/~ e 
as x -~ - ~ ,  and ifq = qo at x = 0, the end point of the domain - ~ < x < 0, then the constant k 
can be evaluated. In fact (e/fl) k is equal to the right hand side of(16) with the constant qo in place 
of q. However, if the domain considered in 0<  x <  m, and it is required that t / ~  e as x ~ ~ ,  
then the only possible solution is r /_  e throughout this domain. Physically, these observations 
are sufficient to show that any effect of a change in the bed of the stream is felt upstream of that 
change, and if the slope is uniform downstream from a certain position then the depth of the 
stream is constant beyond that point. 

Indirect means of gaining analytical results are always possible; (i.e. given r/(x), find the 
profile h(x) that creates such a wave). The one noted here is that the long sinusoidal wave 
r /= a sin 2x, ~ = O(e) and 2 4  1, is created by the profile h = a sin 2(x-z) .  The distance 
z = fle/3e represents the lag of the free surface behind that of the bed. P. Smith [5] has gained 
more general numerical solutions for this sinusoidal wave. 

5. Numerical Solutions 

The first order differential equation has been integrated numerically for different profiles h(x); 
those presented in Fig. 2 display the dominant features present. As noted in the previous sec- 
tion, the effect of a change in the bed is felt well upstream, but not at all downstream of the 
variation. Also, just downstream of the highest point of the bed there is the lowest point of the 
stream; the flow will consequently have its maximum velocity close to such positions. When 
there is the deepest hollow in the bed this state is reversed. The linear analysis of P. Smith, who 
considered a bed-profile similar to that of Fig. 2a, showed a single hump only on the free 
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h(x) --Y2(1 +x2) -1 e = a rc  tan  (~/5) 

(The v e r t i c a l  scale is exaggerated in both f i gu res )  
~y 

D i rec t i on  
of f low.  

-3  

Figure 2a. 

I I 
-2  -1 

h ( x )  = x ( l + x 2 )  -2 

D i rec t i on  
of  f l ow.  

I I I ~= 

0 I 2 3 

e = arc tan (I/5) 

-4  -3  - 2  -1 0 1 2 / 3  - - - - - - - 4  

Figure 2b. 

surface; this hump was slightly asymmetric and positioned a little upstream of that on the bed. 
This is just the feature displayed by a numerical investigation of our solution (15). As is often 
the case, such common ground between different linear and non-linear theories is more typical 
of the linear than the non-linear extension. 
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Appendix 

In this appendix the analysis for the derivation of the differential equation (13) is briefly 
described. To begin, the no-slip conditions (6) on the bed indicate 

01 + 2h02 + 3h 203 = O (~) (A1) 
and 

0o + hOlx+ h202x+ h303x = O( 5) �9 (A2) 

Inthe  first of these the left hand side in O (~2), while in the other, all but the last term are 0 (e3). 
(Although the exact error will always be given in the following, a general rule is that we will 
keep the first two non-zero terms only in the series expansions with respect to e.) Next, the 
kinematic condition on the free surface, (5a), indicates 

(01-I- 2t/02-t- 3t/203)t/~ -+- (0ox-t- t / 01~+  r /202x+  t/303x) = O(gs) ; (A3) 

all except the last term, which is O (e~), are O (e3). Finally the two dynamic conditions (5b,c) show 

(Po + t/p 1) + 2 (0 ix + 2tI02~) + (202 + 6t/03)171 = O (e3), (A4) 

and 

(202 + 6t103) + (P0 + ~Pl)tlx = O(e3) ; (A5) 

the first terms in the brackets are O (e) in each equation, while the others are O (e2). 
The quantities 03 and Pl can now be found from (12a) and (12c) respectively to the orders of 

magnitude required. After substitution, the five equations (A1-5) contain the five unknown 
functions 0o, 01, 02, Po and t/, together with the known function h. It is now a straightforward 
process to eliminate all the unknown functions except ~ ; the result is the differential equation 
(13) for t/(x)in terms of h(x). 
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